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We study the average numb&,{ per site of the number of different configurations of a branched polymer of
n bonds on the Given-Mandelbrot family of fractals using exact real-space renormalization. Different members
of the family are characterized by an integer paramiet@<b<. The fractal dimension varies from l9g
to 2 asb is varied from 2 tox. We find that for allo=3, A, varies as\" exp(bn?), where\ andb are some
constants, and € < 1. We determine the exponeiif and the size exponemt(average diameter of polymer
varies am”), exactly for allb, 3<b=o. This generalizes the earlier results of Knezevic and Vannimenus for
b=3 [Phys. Rev B35, 4988(1987].
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I. INTRODUCTION on fractals for higheb has not been undertaken so far. Nor

The study of statistical physics models on deterministic2'® the properties of the largehmit known. .
fractals has a long histofyi—4]. Linear and branched poly- . In this paper we study the number of different configura-
mers on fractals with a finite ramification number provide(ions Of an n-bond branched polymer on the Given-
very simple and pedagogical examples of renormalizatiod1andelbrot family of fractals using the exact real-space
group techniques at work: these system show a nontriviglénormalization group techniques. On regular lattices, this
critical point, and the values of the critical exponents can béumber usually varies as"n™’, where \ is some lattice-
determined by linearizing the exact real-space renormalizadependent constant, anflis a critical exponent. General
tion transformation. The renormalization equations aretheoretical arguments that prove the exponential growth
coupled polynomial recursion equations in a finite number ofvould allow stronger correction terms like éhp?’), with
variables, and are easy to study. By studying different geo#<<1. Why the first correction term to the exponential
metrical fractals, one can investigate how the critical expogrowth is a simple power-law term is not fully understood.
nents change with the geometrical properties of the underlyIo see how general is the power-law correction form, one
ing space. can study this question on different graphs, e.g., fractals. We

One particular family of fractals which has been used of-find the power-law correction also on the 2 fractal. How-
ten for such studies is the Given-Mandelbrot family of frac-€Ver, this case is exceptional. Forlak 2, while the number
tals[5]. Different members of the family are characterized byof configurations still increases exponentially with the
an integerb, with 2<b==. As we increasé from 2 to o, leading correction term to the exponential growth is the
the fractal dimension increases from J&yto 2. The critical  stretched-exponential form: this number varies )@ebnw,
properties of linear polymers on te=2 fractal were studied where\ andb are some constants, an&@ < 1. We deter-
in Ref.[2], and these results were extendecbts 8 by EI-  mine the singularity exponent, and the size exponent
ezovicet al. [6] using the exact renormalization equations.(average diameter of polymer variesr#$, exactly for allb,
Surprisingly, it was found that while the exponent ap- 3<b=o. This generalizes the earlier results of KV fbr
peared to converge to the two-dimensional value 3/4p as =2 and 3.
was increased from 2 to 8, the difference in the susceptibility This paper is organized as follows: In Sec. I, we start by
exponenty, from the known exact value 43/32 in two di- recapitulating the definition of the Given-Mandelbrot family
mensions was found to increase with increadind@his was of fractals, and introduce the generating function for the
explained in Ref[7], where the asymptotic behavior of criti- number of branched polymer configurations withmono-
cal exponents for largk was determined theoretically using mers. Since the fractal does not have translational invariance,
finite-size scaling arguments, and it was shown thgt we average over different positions of the polymer. The gen-
should tend to a different value 133/32 for lafgeNumeri-  eral technique of real-space renormalization applied to these
cal Monte Carlo renormalization group techniques have beeproblems is outlined in Sec. lll, using the=2 case as an
used to estimate the critical exponents for significantly largeillustrative example. The qualitative behavior of the renor-
values ofb up to 80[8,9]. Knezevic and Vannimenu&V)  malization equations fdv= 3 is discussed in Sec. IV. It turns
used the real-space renormalization technique to study theut that while the equations involve rather complicated high-
properties of branched polymers on the2 fractal, and also degree polynomials, the critical exponentsand ¢ do not
studied the transition from the extended phase to collapsedepend on most of the terms in these polynomials. We can
phasd 10]. This was later extended to other fractals, includ-ignore most of these terms, and still determine &hact
ing the b=3 fractal[11]. Dense branched polymers for the values of these exponents, if we can identify the “dominant
b=2 fractal have been studied in the context of spanningerms” in the recursion equations. This is done in Sec. V.
trees and loop-erased random wall®], and the Abelian Finally, in Sec. VI, using our knowledge of the dominant
sandpile mod€]13]. However, a study of branched polymers terms, we determine the exponentsand ¢ for all b= 3,
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FIG. 1. The recursive construction of the Given-Mandelbrot
fractal forb=4. (a) The graph of first-order triangle.(b) The graph
of a (r+1)-order triangle, formed by joinindp(b+1)/2 rth-order
triangles shown as shaded triangles here.

Do E® O

FIG. 3. Definition of the restricted partition functioné”, B,
c®, DO, EN, andF".

;/iv(;tg;ut having to write down the full set of recursion equa- Refs.[2,10,11. Let A(N) be the number O.f distinct single
connected clusters af bonds on a graph witN total num-
ber of bonds in the graph, different translations of the cluster
Il. DEFINITIONS being counted as distinct. For lar§e this number increases

For any given integen, 2<b< «, the recursive construc- linearly with N. We then define

tion of the Given-Mandelbrot family of fractals is shown in A, =limy .. A(N)/N; (1)
Fig. 1. We start with a graph with three vertices and three
edges forming a triangle. This is called the first-order tri-and
angle. To construct the graph of tie+ 1)th-order triangle, %
we take graphs df(b+1)/2 triangles ofrth order, and glue G(X) = > AX", 2)
them togethefi.e., identify corner verticgsas shown in the n=0
figure, to form an equilateral triangle with base whichbis
times longer. The case=2 corresponds to the well-known
Sierpinski gasketFig. 2).

It is easy to see that the number of edges in the graph of 1. RENORMALIZATION EQUATIONS
the rth-order triangle is B'(b+1)'2™", and all vertices have FOR THE b=2 FRACTAL
coordination number 4 or 6, except the corner vertices. The We assign a weight” to each configuration of the poly-
distance between the comer verticesri-order triangle is  mer with n occupied bonds, and define restricted partition
bl Thus the fractal dimension of the graph B, functionsA®, B". ¢ DO E®, andF®, as shown in Fig.
=log[b(b+1)/2]. Forb=2, 3, 4.., these values are 1.5849, 3 HereA® js the sum of weights of all connected configu-
1.6309, 1.6609,., respectively. For largé, the fractal di-  rations of the branched polymer insiderth-order triangle,
mension tends to 2 d3,~2-log, 2. The spectral dimension g,ch that only one of the corner vertices is occupied by the
D, of the graph can also be calculated exactly for genleral polymer, and the other two corner vertices are unoccupied.
[14]. The values oD, for b=2-10 are listed in Ref15]. For D" is the sum of weights of all configurations with two
largeb, E)b tends to 2, and the leading correction to its lim- mutu_a_lly disconnected clusters,_ each cluster connected to a
o o s specified corner vertex8"” consists of the sum of all con-
iting value is given byD,~2-log logbh/logb [16].

S . ; figurations of polymer that connect two specified corner ver-
The determination of the generating function for the g Pol P

tices of the triangle, with the third vertex remaining unoccu-
branched polymers on these fractals follows the treatment ied. Similarly, E” and F" correspond to sums over all

configurations with all three corner vertices occupied, mutu-
ally disconnected, and connected, respectiveély) corre-
sponds to all three corner vertices occupied, but only two
specified vertices connected to each other by paths involving
occupied bonds lying within the triangle.

The values of these restricted functions ferl are

AV =DW=ED=1;BY=CcV=x; F¥=3¢+x%. (3)

where we assume the conventidg=1.

It is straightforward to write down the recursion equations
for these restricted partition functions at leyet1) in terms
of those at levet. One has to sum over all possible polymer
configurations for differentth-order triangles, subject to the
FIG. 2. The graph of a fifth-order triangle for=2. constraint that all occupied bonds are connected to one of the
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corner vertices of thér+1)th-order triangle. For example, tion G(x) in terms of{Ki(’)} in a polynomial form similar to

for b=2, KV obtained Eq. (10),
AT = A[1 + 2B + 2B?] + 2BC + F[B? + A> + 2BD], -
@ G(x) = X, [b(b+ 1/2] "g({K]"}. (12
r=1
B =B2+ B3+ F[4BC+ 2AB]+FiB+D], (5 It is rather tedious to write down the explicit forms of

these polynomials for anp>3. The number of terms in

(r+1) — AR2 2 2 2 eachf; increases very fast with. There are approximately
c AB™+3B°C+F[7C°+ 2BD]+FIC+E], (6) 100 terms in each of the recursion equationster3 [17],
and the number would run into thousandslier4. The num-

1) — p2 2 2 2
D" = A?+ B[6C? + 4AC+ 2A%] + D[ 2B + 3B] ber of terms would increase &8? for largeb, as that is the

+ 2F[2CD + AD + BC + BE], (7) number of polynomials with six variables with maximum
degreeb(b+1)/2. Also, the coefficients of the terms become
E0+D = A3 + 14C3 + 12BCD + 6ABD + 3B2E very Iarge,. increasing as ef). Even forb=3, to generate
by the recursion equations, one has to use a computer. It seems
+3F[C°+ D"+ 4CE], (8)  clear that a brute-force approach to determine the recursion
equations is not feasible, except for a few additional values
F(+D = 3FB? + 6F2C + F3, (9  ofb.

. . Interestingly, even though the recursion equations are
where we have dropped the supersc(iptover all the vari- rather complicated, we show below that for al=3, the

a.bles. in the r!ght-hand side Of. all the recursion equations t%enerating function has an essential singularity of the type
simplify notation. The generating functioB(x) is express- G(X) ~ exp(alx.— X" This  corresponds  to A
C . il

ible in terms of these variables, ~x;"exp(bn’), whereb is some constant, angi=a/(1+a).

* ) ) , We determine the exact value of tbedependent exponents
G(x)= >, 3"(AD"+ AV B + BN DM, (100 g andwforall b.
r=1 If we start with the initial condition$Eq. (3)], and iterate

It was shown by KV that there exists a critical vabge such the recursion equat_ions, KV found that many qualitative fea-
that for all x<x,, (AT ,B®,C" DO ED FO) tends to a tures of the behavior of the recursion equations for bhe

. . . 2 3 =3 case are same as for2: for all x below a critical value
fixed point(A'(x),0,0,A" (x),A (x),0), where the value of %, (AD.BO,CH DO ED FO) tends to a fixed point
A"(x) increases monotonically from 1 te as x increases ' o2 e ] . . o

from 0 tox,. For all x>x, AT B G0, Do, g0 E0 g (A00,0,0A700,A(,0), whereA'( diverges to infin-
diverge to infinity. Atx=x,, the values oA, C), D, and ity as x tends tox. from below. For allx>x., the values of

E® diverge to infinity for larger. If we change variables to 2! {Ki} tend to infinit(%/) for(riafger. E)m X=X, both forb=2
~ ~ ~ ~ ~ ~ and 3, the values A", D'", andE"’ tend to infinity, while
A=AF, B=B, C=CF, D=DF?, andE=EF3, F=F, the non- Y

~~~~~ C” andF" decrease to zero with iteration. The main differ-
triviaLfixed point occurs at finite values @&, B, C, D, E,  ence is the limiting behavior 0B at x=x.. It tends to a
with F=0. Linearized analysis of the renormalization equa-nonzero limit forb=2, but to zero fob=3. Also, the vari-
tions near the fixed point determines the singularity exponenables{in Ki(”} increase linearly withr for b=2, but they in-
6 for the functionG(x) ~ |x.—X|?", and the exponent (cor-  crease exponentially with for b=3.
relation length~|x.—x|™). KV found »=0.716 55 and# What makes this problem tractable is the fact that while
=0.5328. the polynomial recursion equations are complicated, the
asymptotic behavior of the variables depends only on a few
terms in the recursion equations. To see this, consider first
the simple case when each functihihas only a single term,

Interestingly, the qualitative behavior of the recursion@nd is of the form

IV. RENORMALIZATION EQUATIONS FOR b=3

equations is very different fdy>2. Forb=3, the singularity 6
of G(x) is not a power-law singularity, but an essential sin- KD =1 [K}’)]mij’ (13)
gularity [11]. The caséb>3 has not been studied so far. j=1

For a general value db, the equations are still coupled . . o
: . ) S : wherem is 6X 6 matrix of non-negative integers. These re-
polynomial recursion equations in six variables. We denote_ ' ~. ) : . )
the six functionsA® B FO by K", with i=1-6, and cursion equations reduce to linear recursions on taking loga-
T e S T ' . rithms of both sides. We get
represent the polynomial recursion equations schematically
6
as
. In K™= m; InK” +Inc;. (14)
K™Y =f({K, for i=1-6, (11) i=1

where f; are some(b-dependent polynomial functions of These are easily solved. We get that for larg¢he leading
their six arguments. One can also write the generating fundsehavior ofKi(” is given by

031801-3



DEEPAK DHAR PHYSICAL REVIEW E71, 031801(2005

1 There is one such equation for every such pair. However,
1) In c,}. (15) all of them are not independent. We first reduce these to the

ij minimal set of linearly independent equations. Then, each
one of such equations can be used to eliminate one af'she
and then write Eq(20) as an equation in fewer variables,
with a new lower-dimensional matrisn. This also changes
the coefficientg; and the eigenvectors, but does not change
mijl)ia: )\avia. (16) the value Of)\l and N\o.

For example, for thé&=3 fractal, KV found that the domi-
nant terms in the recursion equations are

m" -
LINRREDY {(mr)ij InKj¥+ ( m

=1

Let the eigenvalues of the matnw be{\,}, «=1-6,ordered
so thath,>\,.1. Let the corresponding right eigenvectors
bev;,, so that

Then, using the eigenvector decompositiomgfwe see that

for larger
’r— 2R2
In K" = §\Lviq + S:Movip + higher order terms, (17) A'=2K87, (22)
where§; and 8, are some coefficients, that can be expressed B’ = A?B%F + 3AB?, (23
in terms ofKi(l), ¢j's, and the left eigenvectors ofi. As m
has non-negative elements aod=1, v;; are of the same C’ = 3A%B* + A%B?F, (24)
sign, which can be chosen positive. Thenkgls increase or
decrease with iteration for largeaccording ass; >0 or &; D’ = 4A%R2 (25)
< 0. Thusé,=0 must correspond t®=x., and for small de- '
v_|at|ons ofx from x., by continuity, we will haves; propor- E’ = 6A‘B2, (26)
tional to (X—Xx,).
If 6,=0, then the behavior d{;'s for larger is governed
! | e F' = 285+ GAB'F. 27)

by the second term in Eq17). In this case, alb;,’s are not
of same sign. Ifv1y, v4p, andus; are positive, and the rest We note that the right-hand side involves omlyB, andF,

negative, we would geKy, K4, andKs to diverge, anK,,  and the variable€, D, andE can be determined in terms of
Ks, andKg tend to zero for large, as expected from the these. In Eq(23), the two terms on the right-hand side are of

preceding discussion. same order if and only iAF=B2. This corresponds to the
Conversely, consider the full recursion equati@t). For  condition

any two infinite sequences” andb™ whose logarithm di-

verges to infinity as increases, we define the notation v1~ 202+t vs=0. (28)
na® Note that we get the same condition if we had used Egs.
a=b, iff ETOOW =1. (18)  (24), or (27) instead of Eq(23). Let
AMDE®D
We make the ansatz that xtx., for larger we have lim o _f (29)
K" = exp(v\"). (19) T

_ _ _ ~ Then we can writd==f"B?/A for larger, and eliminate~
Then, as the number of terms in the recursion equations igng work with a simpler set of recursions

finite, for eachkK;, there must be at least one term in the
right-hand side of its recursion equation for which the A'=2AB?, B'=(3+f)AB". (30)
asymptotic rate of growth of the logarithm is exactly as theT
same as that of the left-hand side. We can define a miatrix

such that this dominant term is of the form of Ef3). Then 2 2
we must have m=\1 4/

his corresponds to a2 matrix,
(31)

With this change of variables, the other equations also reduce
to single term equations. Also, the matrix, and hence the
eigenvalues\; and A\, do not depend on the coefficie(®
while all other terms in the equation f&r are either neglible  +f*),

for larger, or make a contribution of comparable amount.  gimijlarly, in other cases, the asymptotic behavior of the
These dominant terms define the matmix The vector{vi},  variablesk;’s with the full complicated polynomial recursion
then, is a right eigenvector @fi, with eigenvaluex. relations may be reduced to that for a simpler system of

If there is more than one term that makes contributions ogquations where only one terfto be called the dominant
the same order, say in the recursion equatiorkfpthen for  term) is kept from each polynomidi in Eq. (11).

6
v = 2 myj;, (20)
=1

any two such terms, there are two different row vectors The dominant terms are not unique. Only a few terms in
andm; that satisfy Eq(20). Then we can subtract these to each of the polynomialg({K;}) are dominant, and any of
get a relation them can be used for determining the maitmix and hence

6 the eigenvaluea; and\,.

> [m;; = mi’j]vj =0. (21) We note that in the neighborhood of different fixed points,

j=1 different terms are dominant. For example, for branched
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7 C,
FIG. 4. Local modification of polymer confugurations to in-
crease its weight. The weight increases are going from configura- FIG. 5. Some examples of configurations where extending the

tion C; to C,, and fromC; to C,. polymer configuration is not favorable. He@ has higher weight
than Cg, andC5 has higher weight tha@s.

polymers with attractive self-interaction, the fixed point cor-

responding to the dense phase {i&}={0,0,%,0,%,}, This technique of creating a more dominant configuration
Clearly, near this fixed point, the dominant terms are differ-by attaching sidebranches works only if the two triangles
ent. into which the polymer is extended are initially totally empty
of polymer. This is shown in Fig. 5, where again we obtain

V. IDENTIFYING THE DOMINANT TERMS the configurationCqy by attaching more monomers to the

polymer configuratiorCs, with configuration of polymer out-

The problem of determining the critical exponents for M side the triangles remaining unchanged. In this case, the ratio
problem thus is reduced to that of identifying what are the f weights ofCg andCg is DB/A, which we shall show tends

dominant terms in the recursion equations. Each term in thf zero of larga. Hence configurations of typ@s dominate
recursion equation corresponds to a class of configurations of/erC Simil%rl&/ we can seegthat ratio of v>\l/eigshts©§ and

. . . 6* ’
the polymers. However, all possible combinations of powersC7 is C, which tends to zero for large Thus a configuration

are not allowed in a given equation, as there are connectivit e C, is dominant over the corresponding configuration of

constraints on the allowed configurations. For example, X .
term like EP®*D2 corresponding to alfth-order triangles YP¢ Cs. We see thaC or D type vertices are not favored in
creating a dominant configuration.

with configurations of typ& has monomers not connected to We can start with any allowed configuration of the poly-

the corners, and is not allowed. mer, and use this local modification to generate configura-
Also, we note that while we may aliow polymers with tion,s which are more dominafFig. 6). If \?ve start with a%
loops, the ratios like="/C"™ andB™/D tend to zero for . .. . \ . 9. 9. .
initial configuration with a small segment of polymer, with

large r. Thus any term corresponding to a polymer with : ; . )
loops is dominated by one without loop, obtained by remov- oY empty trlangleg, we f'r.'d grqwth attips or S|deb_ranches
ing one of the bonds in the loofwhich changes a typg is favorable. We continue this until no such growth sites can

triangle into typeC, or typeB into type D). Thus loops are be found, and any further growth of polymer reduces its

irrelevant, and the dominant terms correspond to ponme‘lrlJVg%hts'hng Svéh;:]c:]hionr??X:JT;t:oV;(;I?:rt tﬁvoer]?flgr;::?gr)gér[-:lg_
configurations without loops. 9

To understand the characteristics of dominant configura[esr)ond'ng to configurations of typ& We see that in a

tions better, it is instructive to look at configurations thattmhaXImIal weight C?hnflgurﬁtlon n ér+l)th-or_g|er t;'?r?gle’
differ from each other locally. Consider configuratio@s € polymer goes through as many as possible of the corner

andC, shown in Fig. 4. We assume that these are identical t ertices of th? rth-order triangles that a_ren5|de the
each other, except in the threth-order triangles shown. In r+1)th-order triangle(not at the boundary ofjitand do not

C,, the vertex common to the three triangles shown is nofONtain any typ&, D, or E vertices. This is a generalization
connected to the polymer, but @, it is. Then if C, is an of the observation of K\{11] that the dominant terms in the

allowed configuration, which is connected to the outside in 8Cursion equations had the central node of the triangle oc-

specified way, so i€,. If the weight of the rest of polymer cupied. . .
outside the three triangles i/, the weight ofC, is WA, To generate the different terms that are dominant for the

while that ofC, is WBA?. The ratio of weights i#\AB, which diffe_rent terms in E_ilifferenﬂ(i, we can take _the dominant
tends to infinity for larger (we shall show this latgr This configuration forA™™, and modify it appropriately. For ex-
implies that a configuration of typ@, will dominate over the
correspondingC;.

Again, assume tha€; and C, in Fig. 4 are the same

configuration outside the three triangles shown. The ratio of — /s —
weights ofC, andCs is A%F/B. This also tends to infinity for \/\ (\ WV
larger (also proved later and hence given a configuration of YAV/N

type C, or Cs, with two “empty” triangles near the polymer,
we can attach a sidebranch to the polymer to create a con- FIG. 6. Generating the dominant configuration by extending the
figuration that dominates over it. cluster.
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Thus as far as the dominant terms are concerned, we can
express the six functionfs in terms of three functiong’, ),
and Z. Equivalently, we can eliminate three of the variables
(sayC, E, andF) using the relations

D?=AE, B?°=AF, AC=BD. (36)

We note that the weights of the two configurations shown
in Fig. 7 areAB8F? and A'BSF3, respectively. IfB>= AF,
these make asymptotically equal contributidttB!? to X.

Also, asA?F/B=AB, it follows that the weight increases
by the same factoAB in going from configuration of typ€;
to C,, and fromC; to C, (Fig. 4). Similarly, the weight
ample, consider the dominant configurationsB6iY. Now, ~ changes by the same facteb/A=C, when going fromCs
in the dominant configuration foA"™Y, the polymer is as 10 Ce, as in going fronC; to Cq. Again, asC tends to zero.
extended as possible, and hence will reach very close to tHer larger, we have justified the assumption made earlier
other corners of thér +1)th-order triangle. Then we have to about such extensions being unfavorable.
make only a local modification in the triangles near this cor-
ner to connect it to the corner. This is shown in Fig. 8. Let

ARMABALNDN  AANARAA
FIG. 7. Two of the dominant configurations that contribute to
A+ for the b=7 fractal.

the weight of the dominant configurationsAff*Y be X, and

the multiplicative factor needed to convert its weight into

that of B™Y be ).
Then, we have, by definition,

Al = y: B = yy. (32)

To get the dominant configuration &Y, we have to
connect the dominant polymer configurationXf? to both
of the other corners. As the polymer in the dominant con

figuration reaches close to both of them, these local modifi

cations can be done independently. Hence we get
FD = x)2, (33)

To get the dominant configurations fB¥"*?, we have to

add a polymer segment disconnected to the first to the sec-
ond corner. This can also be done by a local modification o

the configuration near the corn@ee Fig. 8 We defineZ as

the factor by which we have to multiply the weight of the

configuration ofA"*Y to affect this change. Thus we have
DMV = xz. (34)

Dominant configurations foE"*? involve two such local

VI. CRITICAL EXPONENTS FOR b=3

If we start with the shortest polymer class of configura-
tions that contribute t&* having just weighA"”, then the
first extension is by a corner vertex at the boundary of the
triangle, and the resulting weight AB. For any subsequent
extension, using either extension of tyy—C,, or Cs
—C,4, the weight increases by a fact&B. After n such
extensions, the weight of the configuration ASB". For
‘weight to be maximal, we wart to be as large as possible.
It is easy to check that the largest valuenoéllowed (to be
denoted byB here is

B=(b*-1)/4, if bis odd, (37

=b%4, if b is even. (38)

f For example, both configurations shown in Fig. 7 have
B=12. From the argument given above, any further exten-
sion of the polymer will be unfavorable. Hence such con-
figurations correspond to the maximal term. If the number of

such configurations id(b), we have
X =d(b)APBA. (39)

It is difficult to determined(b) explicitly for a general

changes, which can be done independently. Similarly, fofaue ofb. Of course, one can determine it for smialiThis
C*¥ also, we have to make local modifications at the twopymber would be expected to increase as(edfor largeb.

corners, connecting one corner to the existhg? cluster,

Fortunately, its precise numerical value does not matter for

and adding a disconnected cluster at the second corner. Tr&%termining the exponentsand .

gives us

EMY = xz? ¢V = xyz. (35)

FIG. 8. Changing a dominant configuration faf*? (middle
figure) to one forB*Y (left figure) or DU*Y (right figure by local

We can similarly determing’ and Z. To modify the domi-
nant configuration oAV to that forB"*Y, one notes that as
the former corresponds to a maximally extended polymer,
one can find specific configurations such that the polymer
reaches up to theth-order triangle neighboring the corner
which we want to reach. Then only changing the configura-
tion in two such triangles is enoudFig. 8). This gives us

Y=BIA. (40)

Similarly, to get configuration of typB*? from X, we need
only add anA-type vertex at that corndFig. 8). This gives

change near a corner. The polymer is connected to another corner

vertex of the(r + 1)th-order triangle(not shown in figurg

Z=A. (412)
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Putting all these together, we see that at the critical point, TABLE I. The fractal dimensiomy, and critical exponents 1/

the recursion equations f&" andB are given by and ¢ for some values ob.
In AT+Y In A" c
( = B B %) @2 b Dy, 1/v o
In BT+Y B-1 B+2/\InB" c,
3 1.63093 1.41484 0.13250
For the 2x 2 matrix given above, the equation determin- 4 1.66096 1.55263 0.13381
ing the eigenvalues is 5 1.68261 1.57268 0.12429
\2-2(B+1) +38=0, 43 7 1.71241 1.64448 0.10702
N 10 1.74036 1.70342 0.09154
whose roots are 15 1.76787 1.74406 0.07825
Ne=B+1t\B2-p+1. (44) 25 1.79685 1.78466 0.06568
. . 5 1.82788 1.82292 0.05375
If 6=x.—xis very small, then it increases by a factar 100 1.85165 184951 0.04543

under iteration, until it becomes sufficiently large so that
linear analysis near the fixed point is no longer applicable.
The number of iterationsy,, required for the deviation to surprising, and a similar behavior has been encountered be-
becomeO(1) is given by fore in the case of the susceptibility exponent for linear poly-
mers. Basically, there is a crossover from the two-

r XS ~
A= 0(1) (45) dimensional Euclidean value to the fractal value. For
whence we get polymers withn monomers, with linear sizezb (i.e., n
<b'”, where v is the two-dimensional valjethe space
Mmax= IN(1/8)/In \,. (46)  looks Euclidean, and their mean size will be similar to that of

polymers in regular two-dimensional space. However, poly-
mers with n>Db'” feel the constrictions of the corners
1/v=log, \.. (47) strongly, and try to avoid them, and become more compact.
Their average size is given hy, with critical exponenty
dependent om. There is no exponem that we can define

The linear size of polymer varies &8rax~ (1/6)” with

It is easy to check that for largg v has an expansion of

the form for anyb=3, because of the presence of the essential singu-
1 _ larity.
llv= Db<l —m + higher order termp.  (48) One can define the chemical distance expomeior our

problem, just as we do for the Euclidean problem. We take
For §<1, InA" increases as". The maximum contribu- two sites on the branched polymer at a distaficas mea-
tion to G(x) in Eq. (12) comes from the term=r,, hence sured along bonds of the polymer. If the average Euclidean
we can replace the sum by the largest term, and writdlistance between these points($), we define the exponent
In G(X) ~ In Xfmad ~ \'max This gives InG(x) ~ (1/8)73, with  z by the relationt(¢) ~ ¢X7, for 1< ¢ <n'”. We have not
been able to calculatefor different values ob.
a= InA_ (49) We note that the logarithm of the number of configura-
NN, tions of polymer acts like the entropy. The nontranslationally
invariant fractal lattice provides a deterministic model for the
inhomogeneous environment encountered by the polymer in
k a o a random environment. In this case, it would seem more
If G(x) varies as eXix.—x)™°] for x nearx,, it is €asy o eaq0nable to average the logarithm of the number of con-
see that coefficient ok" in the Taylor expansion 06(X)  figurations of rooted branched polymers over different posi-
varies asx;'exp(bn’) where b is some constant, ang"  tjons of the root, as that would correspond to averaging the
=al(1l+a). free energy of the polymer over different positions of the
We have listed the numerical values of the critical expo-polymer in space. Such averages have been calculated only
nents 1k and ¢, along with the fractal dimensioD, for  very recently for linear polymers on fractdlss]. It would be

For largeb, this varies as I{8/2)/In b, and tends to zero as
b tends to infinity.

some representative valuestwfn Table I. interesting to see if the stretched exponentional form for
branched polymers is seen also in these “quenched” aver-
VII. DISCUSSION ages. Another open problem is the calculation of exponents

characterizing the collapse transition of self-attracting poly-
The critical exponentr does not tend to the two- mers on these fractals. It is hoped that future works will
dimensional value ab tends to infinity. This is not very throw some light on these questions.
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