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We study the average numberAn per site of the number of different configurations of a branched polymer of
n bonds on the Given-Mandelbrot family of fractals using exact real-space renormalization. Different members
of the family are characterized by an integer parameterb, 2øbø`. The fractal dimension varies from log2 3
to 2 asb is varied from 2 tò . We find that for allbù3, An varies asln expsbncd, wherel andb are some
constants, and 0,c,1. We determine the exponentc, and the size exponentn saverage diameter of polymer
varies asnnd, exactly for allb, 3øbø`. This generalizes the earlier results of Knezevic and Vannimenus for
b=3 fPhys. Rev B35, 4988s1987dg.
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I. INTRODUCTION

The study of statistical physics models on deterministic
fractals has a long historyf1–4g. Linear and branched poly-
mers on fractals with a finite ramification number provide
very simple and pedagogical examples of renormalization
group techniques at work: these system show a nontrivial
critical point, and the values of the critical exponents can be
determined by linearizing the exact real-space renormaliza-
tion transformation. The renormalization equations are
coupled polynomial recursion equations in a finite number of
variables, and are easy to study. By studying different geo-
metrical fractals, one can investigate how the critical expo-
nents change with the geometrical properties of the underly-
ing space.

One particular family of fractals which has been used of-
ten for such studies is the Given-Mandelbrot family of frac-
talsf5g. Different members of the family are characterized by
an integerb, with 2øbø`. As we increaseb from 2 to `,
the fractal dimension increases from log2 3 to 2. The critical
properties of linear polymers on theb=2 fractal were studied
in Ref. f2g, and these results were extended tobø8 by El-
ezovic et al. f6g using the exact renormalization equations.
Surprisingly, it was found that while the exponentnb ap-
peared to converge to the two-dimensional value 3/4, asb
was increased from 2 to 8, the difference in the susceptibility
exponentgb from the known exact value 43/32 in two di-
mensions was found to increase with increasingb. This was
explained in Ref.f7g, where the asymptotic behavior of criti-
cal exponents for largeb was determined theoretically using
finite-size scaling arguments, and it was shown thatgb
should tend to a different value 133/32 for largeb. Numeri-
cal Monte Carlo renormalization group techniques have been
used to estimate the critical exponents for significantly larger
values ofb up to 80f8,9g. Knezevic and VannimenussKV d
used the real-space renormalization technique to study the
properties of branched polymers on theb=2 fractal, and also
studied the transition from the extended phase to collapsed
phasef10g. This was later extended to other fractals, includ-
ing the b=3 fractal f11g. Dense branched polymers for the
b=2 fractal have been studied in the context of spanning
trees and loop-erased random walksf12g, and the Abelian
sandpile modelf13g. However, a study of branched polymers

on fractals for higherb has not been undertaken so far. Nor
are the properties of the large-b limit known.

In this paper we study the number of different configura-
tions of an n-bond branched polymer on the Given-
Mandelbrot family of fractals using the exact real-space
renormalization group techniques. On regular lattices, this
number usually varies aslnn−u, where l is some lattice-
dependent constant, andu is a critical exponent. General
theoretical arguments that prove the exponential growth
would allow stronger correction terms like expsbncd, with
c,1. Why the first correction term to the exponential
growth is a simple power-law term is not fully understood.
To see how general is the power-law correction form, one
can study this question on different graphs, e.g., fractals. We
find the power-law correction also on theb=2 fractal. How-
ever, this case is exceptional. For allbÞ2, while the number
of configurations still increases exponentially withn, the
leading correction term to the exponential growth is the
stretched-exponential form: this number varies aslnebnc

,
wherel andb are some constants, and 0,c,1. We deter-
mine the singularity exponentc, and the size exponentn
saverage diameter of polymer varies asnnd, exactly for allb,
3øbø`. This generalizes the earlier results of KV forb
=2 and 3.

This paper is organized as follows: In Sec. II, we start by
recapitulating the definition of the Given-Mandelbrot family
of fractals, and introduce the generating function for the
number of branched polymer configurations withn mono-
mers. Since the fractal does not have translational invariance,
we average over different positions of the polymer. The gen-
eral technique of real-space renormalization applied to these
problems is outlined in Sec. III, using theb=2 case as an
illustrative example. The qualitative behavior of the renor-
malization equations forbù3 is discussed in Sec. IV. It turns
out that while the equations involve rather complicated high-
degree polynomials, the critical exponentsn and c do not
depend on most of the terms in these polynomials. We can
ignore most of these terms, and still determine theexact
values of these exponents, if we can identify the “dominant
terms” in the recursion equations. This is done in Sec. V.
Finally, in Sec. VI, using our knowledge of the dominant
terms, we determine the exponentsn and c for all bù3,
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without having to write down the full set of recursion equa-
tions.

II. DEFINITIONS

For any given integerb, 2øb,`, the recursive construc-
tion of the Given-Mandelbrot family of fractals is shown in
Fig. 1. We start with a graph with three vertices and three
edges forming a triangle. This is called the first-order tri-
angle. To construct the graph of thesr +1dth-order triangle,
we take graphs ofbsb+1d /2 triangles ofrth order, and glue
them togethersi.e., identify corner verticesd as shown in the
figure, to form an equilateral triangle with base which isb
times longer. The caseb=2 corresponds to the well-known
Sierpinski gasketsFig. 2d.

It is easy to see that the number of edges in the graph of
the rth-order triangle is 3brsb+1dr2−r, and all vertices have
coordination number 4 or 6, except the corner vertices. The
distance between the corner vertices ofrth-order triangle is
br−1. Thus the fractal dimension of the graph isDb
=logbfbsb+1d /2g. For b=2, 3, 4…, these values are 1.5849,
1.6309, 1.6609,…, respectively. For largeb, the fractal di-
mension tends to 2 asDb<2−logb 2. The spectral dimension

D̃b of the graph can also be calculated exactly for generalb

f14g. The values ofD̃b for b=2–10 are listed in Ref.f15g. For

largeb, D̃b tends to 2, and the leading correction to its lim-

iting value is given byD̃b<2− log logb/ log b f16g.
The determination of the generating function for the

branched polymers on these fractals follows the treatment of

Refs. f2,10,11g. Let AnsNd be the number of distinct single
connected clusters ofn bonds on a graph withN total num-
ber of bonds in the graph, different translations of the cluster
being counted as distinct. For largeN, this number increases
linearly with N. We then define

An = limN→` AnsNd/N; s1d

and

Gsxd = o
n=0

`

Anx
n, s2d

where we assume the conventionA0=1.

III. RENORMALIZATION EQUATIONS
FOR THE b=2 FRACTAL

We assign a weightxn to each configuration of the poly-
mer with n occupied bonds, and define restricted partition
functionsAsrd, Bsrd, Csrd, Dsrd, Esrd, andFsrd, as shown in Fig.
3. HereAsrd is the sum of weights of all connected configu-
rations of the branched polymer inside arth-order triangle,
such that only one of the corner vertices is occupied by the
polymer, and the other two corner vertices are unoccupied.
Dsrd is the sum of weights of all configurations with two
mutually disconnected clusters, each cluster connected to a
specified corner vertex.Bsrd consists of the sum of all con-
figurations of polymer that connect two specified corner ver-
tices of the triangle, with the third vertex remaining unoccu-
pied. Similarly, Esrd and Fsrd correspond to sums over all
configurations with all three corner vertices occupied, mutu-
ally disconnected, and connected, respectively.Csrd corre-
sponds to all three corner vertices occupied, but only two
specified vertices connected to each other by paths involving
occupied bonds lying within the triangle.

The values of these restricted functions forr =1 are

As1d = Ds1d = Es1d = 1; Bs1d = Cs1d = x; Fs1d = 3x2 + x3. s3d

It is straightforward to write down the recursion equations
for these restricted partition functions at levelsr +1d in terms
of those at levelr. One has to sum over all possible polymer
configurations for differentrth-order triangles, subject to the
constraint that all occupied bonds are connected to one of the

FIG. 1. The recursive construction of the Given-Mandelbrot
fractal forb=4. sad The graph of first-order triangle.sbd The graph
of a sr +1d-order triangle, formed by joiningbsb+1d /2 rth-order
triangles shown as shaded triangles here.

FIG. 2. The graph of a fifth-order triangle forb=2.

FIG. 3. Definition of the restricted partition functionsAsrd, Bsrd,
Csrd, Dsrd, Esrd, andFsrd.
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corner vertices of thesr +1dth-order triangle. For example,
for b=2, KV obtained

Asr+1d = Af1 + 2B + 2B2g + 2B2C + FfB2 + A2 + 2BDg,

s4d

Bsr+1d = B2 + B3 + Ff4BC+ 2ABg + F2fB + Dg, s5d

Csr+1d = AB2 + 3B2C + Ff7C2 + 2BDg + F2fC + Eg, s6d

Dsr+1d = A2 + Bf6C2 + 4AC+ 2A2g + Df2B + 3B2g

+ 2Ff2CD + AD + BC+ BEg, s7d

Esr+1d = A3 + 14C3 + 12BCD+ 6ABD+ 3B2E

+ 3FfC2 + D2 + 4CEg, s8d

Fsr+1d = 3FB2 + 6F2C + F3, s9d

where we have dropped the superscriptsrd over all the vari-
ables in the right-hand side of all the recursion equations to
simplify notation. The generating functionGsxd is express-
ible in terms of these variables,

Gsxd = o
r=1

`

3−rsAsrd2 + Asrd2Bsrd + Bsrd2Dsrdd. s10d

It was shown by KV that there exists a critical valuexc, such
that for all x,xc, sAsrd ,Bsrd ,Csrd ,Dsrd ,Esrd ,Fsrdd tends to a

fixed point (A*sxd ,0 ,0 ,A* 2
sxd ,A* 3

sxd ,0), where the value of
A*sxd increases monotonically from 1 tò as x increases
from 0 to xc. For all x.xc, Asrd, Bsrd, Csrd, Dsrd, Esrd, Fsrd all
diverge to infinity. Atx=xc, the values ofAsrd, Csrd, Dsrd, and
Esrd diverge to infinity for larger. If we change variables to

Ã=AF, B̃=B, C̃=CF, D̃=DF2, and Ẽ=EF3, F̃=F, the non-

trivial fixed point occurs at finite values ofÃ, B̃, C̃, D̃, Ẽ,

with F̃=0. Linearized analysis of the renormalization equa-
tions near the fixed point determines the singularity exponent
u for the functionGsxd,uxc−xuu−1, and the exponentn scor-
relation length,uxc−xu−nd. KV found n.0.716 55 andu
.0.5328.

IV. RENORMALIZATION EQUATIONS FOR bÐ3

Interestingly, the qualitative behavior of the recursion
equations is very different forb.2. Forb=3, the singularity
of Gsxd is not a power-law singularity, but an essential sin-
gularity f11g. The caseb.3 has not been studied so far.

For a general value ofb, the equations are still coupled
polynomial recursion equations in six variables. We denote
the six functionsAsrd ,Bsrd ,… ,Fsrd by Ki

srd, with i =1–6, and
represent the polynomial recursion equations schematically
as

Ki
sr+1d = f ishKj

srdjd, for i = 1–6, s11d

where f i are somesb-dependentd polynomial functions of
their six arguments. One can also write the generating func-

tion Gsxd in terms ofhKi
srdj in a polynomial form similar to

Eq. s10d,

Gsxd = o
r=1

`

fbsb + 1d/2g−rgshKj
srdjd. s12d

It is rather tedious to write down the explicit forms of
these polynomials for anyb.3. The number of terms in
each f i increases very fast withb. There are approximately
100 terms in each of the recursion equations forb=3 f17g,
and the number would run into thousands forb=4. The num-
ber of terms would increase asb12 for largeb, as that is the
number of polynomials with six variables with maximum
degreebsb+1d /2. Also, the coefficients of the terms become
very large, increasing as expsb2d. Even forb=3, to generate
the recursion equations, one has to use a computer. It seems
clear that a brute-force approach to determine the recursion
equations is not feasible, except for a few additional values
of b.

Interestingly, even though the recursion equations are
rather complicated, we show below that for allbù3, the
generating function has an essential singularity of the type
Gsxd,expsauxc−xu−ad. This corresponds to An

,xc
−nexpsbncd, whereb is some constant, andc=a / s1+ad.

We determine the exact value of theb-dependent exponents
c andn for all b.

If we start with the initial conditionsfEq. s3dg, and iterate
the recursion equations, KV found that many qualitative fea-
tures of the behavior of the recursion equations for theb
=3 case are same as forb=2: for all x below a critical value
xc, sAsrd ,Bsrd ,Csrd ,Dsrd ,Esrd ,Fsrdd tends to a fixed point

(A*sxd ,0 ,0 ,A* 2
sxd ,A* 3

sxd ,0), whereA*sxd diverges to infin-
ity as x tends toxc from below. For allx.xc, the values of
all hKij tend to infinity for larger. For x=xc, both for b=2
and 3, the values ofAsrd, Dsrd, andEsrd tend to infinity, while
Csrd andFsrd decrease to zero with iteration. The main differ-
ence is the limiting behavior ofBsrd at x=xc. It tends to a
nonzero limit forb=2, but to zero forb=3. Also, the vari-
ableshln Ki

srdj increase linearly withr for b=2, but they in-
crease exponentially withr for b=3.

What makes this problem tractable is the fact that while
the polynomial recursion equations are complicated, the
asymptotic behavior of the variables depends only on a few
terms in the recursion equations. To see this, consider first
the simple case when each functionf i has only a single term,
and is of the form

Ki
sr+1d = cip

j=1

6

fKj
srdgmi j , s13d

wherem is 636 matrix of non-negative integers. These re-
cursion equations reduce to linear recursions on taking loga-
rithms of both sides. We get

ln Ki
sr+1d = o

j=1

6

mi j ln Kj
srd + ln ci . s14d

These are easily solved. We get that for larger, the leading
behavior ofKi

srd is given by
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ln Ki
sr+1d = o

j=1

6 Fsmrdi j ln Kj
s1d + Smr − 1

m − 1
D

i j

ln cjG . s15d

Let the eigenvalues of the matrixm behlaj, a=1–6,ordered
so thatla.la+1. Let the corresponding right eigenvectors
be via, so that

mi jvia = lavia. s16d

Then, using the eigenvector decomposition ofm, we see that
for large r

ln Ki
srd = d1l1

r vi1 + d2l2
r vi2 + higher order terms, s17d

whered1 andd2 are some coefficients, that can be expressed
in terms ofKi

s1d, cj’s, and the left eigenvectors ofm. As m
has non-negative elements andci ù1, vi1 are of the same
sign, which can be chosen positive. Then allKi’s increase or
decrease with iteration for larger according asd1.0 or d1
,0. Thusd1=0 must correspond tox=xc, and for small de-
viations ofx from xc, by continuity, we will haved1 propor-
tional to sx−xcd.

If d1=0, then the behavior ofKi’s for larger is governed
by the second term in Eq.s17d. In this case, allvi2’s are not
of same sign. Ifv12, v42, and v52 are positive, and the rest
negative, we would getK1, K4, andK5 to diverge, andK2,
K3, and K6 tend to zero for larger, as expected from the
preceding discussion.

Conversely, consider the full recursion equations11d. For
any two infinite sequencesasrd andbsrd whose logarithm di-
verges to infinity asr increases, we define the notation

a > b, iff lim
r→`

ln asrd

ln bsrd = 1. s18d

We make the ansatz that atx=xc, for larger we have

Ki
srd > expsvil

rd. s19d

Then, as the number of terms in the recursion equations is
finite, for eachKi, there must be at least one term in the
right-hand side of its recursion equation for which the
asymptotic rate of growth of the logarithm is exactly as the
same as that of the left-hand side. We can define a matrixm
such that this dominant term is of the form of Eq.s13d. Then
we must have

lvi = o
j=1

6

mi jv j , s20d

while all other terms in the equation forKi are either neglible
for large r, or make a contribution of comparable amount.
These dominant terms define the matrixm. The vectorhvij,
then, is a right eigenvector ofm, with eigenvaluel.

If there is more than one term that makes contributions of
the same order, say in the recursion equation forKi, then for
any two such terms, there are two different row vectorsmi
andmi8 that satisfy Eq.s20d. Then we can subtract these to
get a relation

o
j=1

6

fmi j − mi j8 gv j = 0. s21d

There is one such equation for every such pair. However,
all of them are not independent. We first reduce these to the
minimal set of linearly independent equations. Then, each
one of such equations can be used to eliminate one of thev’s,
and then write Eq.s20d as an equation in fewer variables,
with a new lower-dimensional matrixm. This also changes
the coefficientsci and the eigenvectors, but does not change
the value ofl1 andl2.

For example, for theb=3 fractal, KV found that the domi-
nant terms in the recursion equations are

A8 = 2A2B2, s22d

B8 = A2B2F + 3AB4, s23d

C8 = 3A2B4 + A3B2F, s24d

D8 = 4A3B2, s25d

E8 = 6A4B2, s26d

F8 = 2B6 + 6AB4F. s27d

We note that the right-hand side involves onlyA, B, andF,
and the variablesC, D, andE can be determined in terms of
these. In Eq.s23d, the two terms on the right-hand side are of
same order if and only ifAF>B2. This corresponds to the
condition

v1 − 2v2 + v6 = 0. s28d

Note that we get the same condition if we had used Eqs.
s24d, or s27d instead of Eq.s23d. Let

lim
r→`

AsrdFsrd

sBsrdd2 = f* . s29d

Then we can writeF= f*B2/A for larger, and eliminateF
and work with a simpler set of recursions

A8 = 2A2B2, B8 = s3 + f*dAB4. s30d

This corresponds to a 232 matrix,

m = S2 2

1 4
D . s31d

With this change of variables, the other equations also reduce
to single term equations. Also, the matrixm, and hence the
eigenvaluesl1 and l2 do not depend on the coefficients3
+ f*d.

Similarly, in other cases, the asymptotic behavior of the
variablesKi’s with the full complicated polynomial recursion
relations may be reduced to that for a simpler system of
equations where only one termsto be called the dominant
termd is kept from each polynomialf i in Eq. s11d.

The dominant terms are not unique. Only a few terms in
each of the polynomialsf ishKjjd are dominant, and any of
them can be used for determining the matrixm, and hence
the eigenvaluesl1 andl2.

We note that in the neighborhood of different fixed points,
different terms are dominant. For example, for branched
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polymers with attractive self-interaction, the fixed point cor-
responding to the dense phase ishKij=h0,0 ,̀ ,0 ,` ,`j.
Clearly, near this fixed point, the dominant terms are differ-
ent.

V. IDENTIFYING THE DOMINANT TERMS

The problem of determining the critical exponents for our
problem thus is reduced to that of identifying what are the
dominant terms in the recursion equations. Each term in the
recursion equation corresponds to a class of configurations of
the polymers. However, all possible combinations of powers
are not allowed in a given equation, as there are connectivity
constraints on the allowed configurations. For example, a
term like Ebsb+1d/2 corresponding to allrth-order triangles
with configurations of typeE has monomers not connected to
the corners, and is not allowed.

Also, we note that while we may allow polymers with
loops, the ratios likeFsrd /Csrd and Bsrd /Dsrd tend to zero for
large r. Thus any term corresponding to a polymer with
loops is dominated by one without loop, obtained by remov-
ing one of the bonds in the loopswhich changes a typeF
triangle into typeC, or typeB into typeDd. Thus loops are
irrelevant, and the dominant terms correspond to polymer
configurations without loops.

To understand the characteristics of dominant configura-
tions better, it is instructive to look at configurations that
differ from each other locally. Consider configurationsC1
andC2 shown in Fig. 4. We assume that these are identical to
each other, except in the threerth-order triangles shown. In
C1, the vertex common to the three triangles shown is not
connected to the polymer, but inC2 it is. Then if C1 is an
allowed configuration, which is connected to the outside in a
specified way, so isC2. If the weight of the rest of polymer
outside the three triangles isW, the weight ofC1 is WA,
while that ofC2 is WBA2. The ratio of weights isAB, which
tends to infinity for larger swe shall show this laterd. This
implies that a configuration of typeC2 will dominate over the
correspondingC1.

Again, assume thatC3 and C4 in Fig. 4 are the same
configuration outside the three triangles shown. The ratio of
weights ofC4 andC3 is A2F /B. This also tends to infinity for
larger salso proved laterd, and hence given a configuration of
type C1 or C3, with two “empty” triangles near the polymer,
we can attach a sidebranch to the polymer to create a con-
figuration that dominates over it.

This technique of creating a more dominant configuration
by attaching sidebranches works only if the two triangles
into which the polymer is extended are initially totally empty
of polymer. This is shown in Fig. 5, where again we obtain
the configurationC6 by attaching more monomers to the
polymer configurationC5, with configuration of polymer out-
side the triangles remaining unchanged. In this case, the ratio
of weights ofC6 andC5 is DB/A, which we shall show tends
to zero or larger. Hence configurations of typeC5 dominate
overC6. Similarly, we can see that ratio of weights ofC8 and
C7 is C, which tends to zero for larger. Thus a configuration
like C7 is dominant over the corresponding configuration of
type C8. We see thatC or D type vertices are not favored in
creating a dominant configuration.

We can start with any allowed configuration of the poly-
mer, and use this local modification to generate configura-
tions which are more dominantsFig. 6d. If we start with an
initial configuration with a small segment of polymer, with
many empty triangles, we find growth at tips or sidebranches
is favorable. We continue this until no such growth sites can
be found, and any further growth of polymer reduces its
weight. This is then the maximal weight configuration. Fig-
ure 7 shows two such configurations for theb=7 fractal cor-
responding to configurations of typeA. We see that in a
maximal weight configuration in asr +1dth-order triangle,
the polymer goes through as many as possible of the corner
vertices of the rth-order triangles that areinside the
sr +1dth-order trianglesnot at the boundary of itd, and do not
contain any typeC, D, or E vertices. This is a generalization
of the observation of KVf11g that the dominant terms in the
recursion equations had the central node of the triangle oc-
cupied.

To generate the different terms that are dominant for the
different terms in differentKi, we can take the dominant
configuration forAsr+1d, and modify it appropriately. For ex-

FIG. 4. Local modification of polymer confugurations to in-
crease its weight. The weight increases are going from configura-
tion C1 to C2, and fromC3 to C4.

FIG. 5. Some examples of configurations where extending the
polymer configuration is not favorable. HereC5 has higher weight
thanC6, andC7 has higher weight thanC8.

FIG. 6. Generating the dominant configuration by extending the
cluster.
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ample, consider the dominant configurations forBsr+1d. Now,
in the dominant configuration forAsr+1d, the polymer is as
extended as possible, and hence will reach very close to the
other corners of thesr +1dth-order triangle. Then we have to
make only a local modification in the triangles near this cor-
ner to connect it to the corner. This is shown in Fig. 8. Let
the weight of the dominant configurations ofAsr+1d beX, and
the multiplicative factor needed to convert its weight into
that of Bsr+1d be Y.

Then, we have, by definition,

Asr+1d > X; Bsr+1d > XY. s32d

To get the dominant configuration ofFsr+1d, we have to
connect the dominant polymer configuration ofAsr+1d to both
of the other corners. As the polymer in the dominant con-
figuration reaches close to both of them, these local modifi-
cations can be done independently. Hence we get

Fsr+1d > XY2. s33d

To get the dominant configurations forDsr+1d, we have to
add a polymer segment disconnected to the first to the sec-
ond corner. This can also be done by a local modification of
the configuration near the cornerssee Fig. 8d. We defineZ as
the factor by which we have to multiply the weight of the
configuration ofAsr+1d to affect this change. Thus we have

Dsr+1d > XZ. s34d

Dominant configurations forEsr+1d involve two such local
changes, which can be done independently. Similarly, for
Csr+1d also, we have to make local modifications at the two
corners, connecting one corner to the existingAsr+1d cluster,
and adding a disconnected cluster at the second corner. This
gives us

Esr+1d > XZ2; Csr+1d > XYZ. s35d

Thus as far as the dominant terms are concerned, we can
express the six functionsf i in terms of three functionsX, Y,
andZ. Equivalently, we can eliminate three of the variables
ssayC, E, andFd using the relations

D2 > AE, B2 > AF, AC> BD. s36d

We note that the weights of the two configurations shown
in Fig. 7 areA14B8F2 andA15B6F3, respectively. IfB2>AF,
these make asymptotically equal contributionA12B12 to X.

Also, asA2F /B>AB, it follows that the weight increases
by the same factorAB in going from configuration of typeC1
to C2, and from C3 to C4 sFig. 4d. Similarly, the weight
changes by the same factorBD/A>C, when going fromC5
to C6, as in going fromC7 to C8. Again, asCsrd tends to zero
for large r, we have justified the assumption made earlier
about such extensions being unfavorable.

VI. CRITICAL EXPONENTS FOR bÐ3

If we start with the shortest polymer class of configura-
tions that contribute toAsr+1d having just weightAsrd, then the
first extension is by a corner vertex at the boundary of the
triangle, and the resulting weight isAB. For any subsequent
extension, using either extension of typeC1→C2, or C3
→C4, the weight increases by a factorAB. After n such
extensions, the weight of the configuration isAnBn. For
weight to be maximal, we wantn to be as large as possible.
It is easy to check that the largest value ofn allowed sto be
denoted byb hered is

b = sb2 − 1d/4, if b is odd, s37d

=b2/4, if b is even. s38d

For example, both configurations shown in Fig. 7 have
b=12. From the argument given above, any further exten-
sion of the polymer will be unfavorable. Hence such con-
figurations correspond to the maximal term. If the number of
such configurations isdsbd, we have

X = dsbdAbBb. s39d

It is difficult to determinedsbd explicitly for a general
value ofb. Of course, one can determine it for smallb. This
number would be expected to increase as expsb2d for largeb.
Fortunately, its precise numerical value does not matter for
determining the exponentsn andc.

We can similarly determineY andZ. To modify the domi-
nant configuration ofAsr+1d to that forBsr+1d, one notes that as
the former corresponds to a maximally extended polymer,
one can find specific configurations such that the polymer
reaches up to therth-order triangle neighboring the corner
which we want to reach. Then only changing the configura-
tion in two such triangles is enoughsFig. 8d. This gives us

Y = B2/A. s40d

Similarly, to get configuration of typeDsr+1d from X, we need
only add anA-type vertex at that cornersFig. 8d. This gives

Z = A. s41d

FIG. 7. Two of the dominant configurations that contribute to
Asr+1d for the b=7 fractal.

FIG. 8. Changing a dominant configuration forAsr+1d smiddle
figured to one forBsr+1d sleft figured or Dsr+1d sright figured by local
change near a corner. The polymer is connected to another corner
vertex of thesr +1dth-order trianglesnot shown in figured.
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Putting all these together, we see that at the critical point,
the recursion equations forAsrd andBsrd are given by

Sln Asr+1d

ln Bsr+1d D = S b b

b − 1 b + 2
DSln Asrd

ln Bsrd D + Sc1

c2
D . s42d

For the 232 matrix given above, the equation determin-
ing the eigenvalues is

l2 − 2sb + 1d + 3b = 0, s43d

whose roots are

l± = b + 1 ± Îb2 − b + 1. s44d

If d=xc−x is very small, then it increases by a factorl+
under iteration, until it becomes sufficiently large so that
linear analysis near the fixed point is no longer applicable.
The number of iterationsrmax required for the deviation to
becomeOs1d is given by

l+
rmaxd . Os1d s45d

whence we get

rmax= lns1/dd/ln l+. s46d

The linear size of polymer varies asbrmax,s1/ddn with

1/n = logb l+. s47d

It is easy to check that for largeb, n has an expansion of
the form

1/n = DbS1 −
1

b lnsb2/2d
+ higher order termsD . s48d

For d!1, ln Asrd increases asl−
r . The maximum contribu-

tion to Gsxd in Eq. s12d comes from the termr =rmax, hence
we can replace the sum by the largest term, and write
ln Gsxd, ln Xsrmaxd,l−

rmax. This gives lnGsxd,s1/dd−a, with

a =
ln l−

ln l+
. s49d

For largeb, this varies as lns3/2d / ln b, and tends to zero as
b tends to infinity.

If Gsxd varies as expfsxc−xd−ag for x nearxc, it is easy to
see that coefficient ofxn in the Taylor expansion ofGsxd
varies asxc

−nexpsbncd where b is some constant, andc
=a/ s1+ad.

We have listed the numerical values of the critical expo-
nents 1/n and c, along with the fractal dimensionDb for
some representative values ofb in Table I.

VII. DISCUSSION

The critical exponentn does not tend to the two-
dimensional value asb tends to infinity. This is not very

surprising, and a similar behavior has been encountered be-
fore in the case of the susceptibility exponent for linear poly-
mers. Basically, there is a crossover from the two-
dimensional Euclidean value to the fractal value. For
polymers with n monomers, with linear size!b si.e., n
!b1/n, where n is the two-dimensional valued, the space
looks Euclidean, and their mean size will be similar to that of
polymers in regular two-dimensional space. However, poly-
mers with n@b1/n feel the constrictions of the corners
strongly, and try to avoid them, and become more compact.
Their average size is given bynn, with critical exponentn
dependent onb. There is no exponentu that we can define
for anybù3, because of the presence of the essential singu-
larity.

One can define the chemical distance exponentz for our
problem, just as we do for the Euclidean problem. We take
two sites on the branched polymer at a distance, as mea-
sured along bonds of the polymer. If the average Euclidean
distance between these points isrs,d, we define the exponent
z by the relationrs,d,,1/z, for 1! , !n1/n. We have not
been able to calculatez for different values ofb.

We note that the logarithm of the number of configura-
tions of polymer acts like the entropy. The nontranslationally
invariant fractal lattice provides a deterministic model for the
inhomogeneous environment encountered by the polymer in
a random environment. In this case, it would seem more
reasonable to average the logarithm of the number of con-
figurations of rooted branched polymers over different posi-
tions of the root, as that would correspond to averaging the
free energy of the polymer over different positions of the
polymer in space. Such averages have been calculated only
very recently for linear polymers on fractalsf18g. It would be
interesting to see if the stretched exponentional form for
branched polymers is seen also in these “quenched” aver-
ages. Another open problem is the calculation of exponents
characterizing the collapse transition of self-attracting poly-
mers on these fractals. It is hoped that future works will
throw some light on these questions.

TABLE I. The fractal dimensionDb, and critical exponents 1/n
andc for some values ofb.

b Db 1/n c

3 1.63093 1.41484 0.13250

4 1.66096 1.55263 0.13381

5 1.68261 1.57268 0.12429

7 1.71241 1.64448 0.10702

10 1.74036 1.70342 0.09154

15 1.76787 1.74406 0.07825

25 1.79685 1.78466 0.06568

50 1.82788 1.82292 0.05375

100 1.85165 1.84951 0.04543
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